Deploying OGC web services

Alistair Ritchie
Landcare Research Informatics Team
previously
GeoScience Victoria, Australia
Acknowledgements

• **GeoScience Victoria**
 - Bruce Simons, Linda Bibby, Gavin Stilgoe, Adele Seymon

• **IUGS-CGI**
 - Including ... Eric Boisvert and Boyan Brodaric (GSC); Steve Richard and Bruce Johnston (USGS); Tim Duffy, John Laxton and Marcus Sen (BGS); Dale Percival, Lesley Wyborn, Ollie Raymond (GA); Jean-Jacques Serrano, Francois Robida, Christian Bellier, Agnes Tellez-Arenas (BRGM)

• **CSIRO/AuScope**
 - Including ... Simon Cox, Robert Woodcock, Guillaume Duclaux, Ryan Fraser, Pavel Golodoniuc, Ben Caradoc-Davies, Rini Angriani, Josh Vote

 Too many people to name here ...
Introduction

- **GeoScience Victoria (GSV)**
 - Victorian state geological survey
 - Custodian of state’s geology and mineral exploration data

- **Many and diverse stakeholders**
 - Mining and exploration companies
 - Government agencies
 - Academic institutions
 - General public

- **Cross-jurisdiction data requirements**
Why?

• Why use web services and community schema?
 • Maintain a number of systems which change over time
 • Need a stable standard interface to data
 • Need a context in which to improve data quality
Sandstone, slate: moderately to well sorted, variably rounded quartz with minor feldspar and lithic grains in quartz silt or clay matrix; minor quartz granule conglomerate; thin to very thick bedded; black fossiliferous...
Data trouble

- GIS layers fit for one purpose: maps
- No use to stakeholders requiring
 - Repeatable
 - Comparable
 - Validate-able
 - High resolution (data, not labels)
 - Multi-purpose

access to data
<?xml version="1.0" encoding="UTF-8"?>
<gsml:GeologicUnit gml:id="gsml.geologicunit.16777549126932931">
 <gml:name codeSpace="http://www.ietf.org/rfc/rfc2616">
 <gml:composition>
 <gsml:CompositionPart>
 </gsml:CompositionPart>
 </gml:composition>
</gsml:GeologicUnit>
Method

• Standardised, science-based approach
• Small organisation, limited resources
 • Almost no budget except individual’s time
• Leverage community involvement
 • Government Geologist Information Committee
 • Joined CGI interoperability working group in 2004
 • Joined EarthResourceML working group in 2007
 • Close collaboration with AuScope/ASRDC since 2008
Team

• Domain expert
 • Former geophysicist

• Ontologist – vocabulary development
 • Former geologist

• Spatial information specialist
 • Failed geologist

• System administrator

• Java developer
Services Deployed

- **GeoSciML**
 - Detailed geological interpretations
 - Standardised Web Map Service layers

- **Observations and Measurements**
 - Drilling data (as GeoSciML boreholes)

- **EarthResourceML**
 - Mines, mineral occurrences and ore deposits
 - Key AuScope portal data-set
Future work

- **Observation and Measurement Services**
- **Web Processing Services**
 - Data transformation and conversion
 - e.g. GeoSciML to ESRI Geodatabase XML
- **Linked data**
 - Converting GML to HTML representations
- **3D and 4D integration**
 - Feed observation and ‘accurate’ interpretation data into 3D and 4D geological models
Lessons Learnt

• Honour the specifications
 • Community schema and profiles
 • Web service specifications
 • Either 100% compliant or not at all
Lessons Learnt

• Know your database
 • Must be well designed and configured
 • For example … don’t neglect spatial and a-spatial indexes

• Know your servers
 • WFSs are like any other web app – deploy accordingly
 • A good system administrator is vital
Lessons Learnt

• The hard work is mapping data models
 – Majority of the deployment time is taken up here
 • Local data models to the community schema
 • Local vocabularies to community vocabularies
 – But …

• Not without reward
 – Significant improvement in data quality
Lessons Learnt

• The hardest work is social
 • technology is no longer an impediment
 • corporate IT service providers can be

• Corporate IT support is crucial
 • and by no means certain
 • work with corporate right from the start
Summary

• Likely to already have the technical expertise to implement this
• Ensure you have the strategic and tactical support of your IT overlords
• Find a community and join it
Getting involved

• Active participant
 • Develop information models and architectures
 • Deploy test services
 • Influence – more likely to get what you want
 • Requires travel and an investment of time

• Observer/implementer
 • Deploy standards compliant services
 • Use support of community
 • As important, if not more so
 • Critical mass of participants → success
Summary

• Was it worth it? Yes!
• Achieved a lot with community support
• *Despite* our small size and limited resources
Thank you